Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770162

RESUMO

Neodymium-iron-boron magnetic oxide powders synthesized by sol-gel Pechini method were studied by using X-ray photoelectron spectroscopy (XPS) and quantum chemical modeling. The powder structure was examined by using X-ray diffraction (XRD) and modeled by using density functional theory (DFT) approximation. The electronic structures of the core and valent regions were determined experimentally by using X-ray photoelectron spectroscopy and modeled by using quantum chemical methods. This study provides important insights into the electronic structure and chemical bonding of atoms of NdFeCoB oxide particles with the partial substitution of Fe by Co atoms.

2.
J Mol Model ; 29(3): 69, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797551

RESUMO

CONTEXT: This paper presents the results of the study of the electronic structure and cationic and excited states of three spiroborate complexes (2-acetylacetonato-1,3,2-benzodioxaborol, its NH- and NMe-derivatives) and three corresponding ligands (acetylacetone, 4-aminopent-3-en-2-one, and 4-methylaminopent-3-en-2-one). Materials based on spiroborates are used in medicine, for example, as a drug carrier. In industry, spiroborate anions are used in ionic liquids and as alternative high performance lubricants. Analysis of experimental and calculated data allowed determining the influence of functional groups on the parameters of the electronic structure and energy of electronic transitions. Compared to acetylacetone and its NH- and NMe-derivatives, the upper filled molecular orbitals of the corresponding spiroborates are stabilized at 0.4-1.7 eV, which is due to the positive charge of the ligand due to the acceptor properties of the dioxyphenylene fragment. Among the studied compounds, when replacing the oxygen atom in the α-position with the NH- or NMe-group, a bathochromic shift of intense bands in the absorption spectra is observed, since the energy intervals between the orbitals of the π3 and π4 ligand are reduced. In addition, in a number of spiroborates, the violation of C2v symmetry when replacing an oxygen atom leads to the appearance of a low-intensity maximum in the long-wave part of the absorption spectrum, due to the π2X → π4 transition. METHOD: Complexes were studied by photoelectron spectroscopy, absorption spectroscopy, and high-level ab initio quantum chemical computations, including the algebraic diagrammatic construction method for the polarization propagator of the second order (ADC(2)), the outer-valence Green's function (OVGF), the density functional theory (DFT), the time-dependent density functional theory (TDDFT) and the domain-based local pair natural orbital (EOM-DLPNO) methods. X-ray photoelectronic spectra of two spiroborates in the condensed state were measured using a two-chamber high-vacuum system MXPS XP (Omicron, Germany). UV-visible absorption spectra were recorded using a spectrophotometer 2550 (Shimadzu-UV, Japan). The geometry of all studied compounds was optimized by the DFT/B3LYP/Def2-SVP method. The energy of electron levels in the S0 state and the distribution of electron density at each MO were obtained by the DFT/CAMB3LYP/cc-pVDZ method. The energies of excited states were obtained by the TDDFT/CAMB3LYP/cc-pVDZ, ADC(2)/cc-pVDZ and EOM-DLPNO/cc-pVDZ methods. All DFT and TDDFT calculations were carried out in the GAMESS (US) software computing package. ADC(2) calculations of excited states were performed using the Orca 4.0.1 software package. EOM-DLPNO and OVGF calculations were carried out in the Gaussian 16 software package.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30769153

RESUMO

The electronic structure and optical properties of the isomeric difluoroboron ß-diketonates, 2,2-difluoro-4-methylnaphtho-[2,1-e]-1,3,2-dioxaborin (I) and 2,2-difluoro-4-methylnaphtho-[1,2-e]-1,3,2-dioxaborin (II), were studied by means of X-ray photoelectron, absorption and luminescence spectroscopies. The experimental results were interpreted using high-level ab initio quantum chemical computations, including the algebraic-diagrammatic construction method for the polarization propagator of the second and third orders (ADC(2) and ADC(3)), the outer-valence Green's function (OVGF) method, and the time-dependent density functional (TDDFT) approach. The X-ray photoelectron measurements were assigned in the entire energy range using the results of the Kohn-Sham orbital calculations which employed the B3LYP functional. Pronounced hypsochromic shift of crystal-state fluorescence was observed in I upon the lowering of temperature, which can be explained by the deterioration of the conditions for excimers formation. According to our results, remarkable feature of II, absent in I, is its phosphorescence at room temperature. Basing on our calculations, a decay mechanism for the S1 state was proposed, explaining the observed differences in the phosphorescence of I and II.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 189: 563-570, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28866412

RESUMO

Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

5.
J Phys Chem A ; 120(37): 7361-9, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27580170

RESUMO

Electronic structure and optical properties of boron difluoride dibenzoylmethanate BF2Dbm and its four derivatives were studied using X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy, and quantum chemistry (DFT and TDDFT). In a series of the studied compounds, the relationship of molecular design and optical properties has been revealed. At the transition from BF2Dbm to BF2Dbm(OCH3)2, the HOMO-LUMO energy gap decreases, resulting in a bathochromic shift of the optical spectra. Substitution of one methoxy group by the nitro group in BF2Dbm(OCH3)2 causes a decrease in the contribution of the chelate ring π-orbital in the LUMO, resulting in a lower value of charge transfer from the substituents to the chelate ring in the case of the first excited state, which determines the characteristics of the main absorption bands. The nitro group transition from the m- to p-position of the benzene ring causes a change in the nature of the main bands of the optical spectra due to the increase of the splitting value of the LUMO and LUMO+1 levels. The main band in the optical spectra of the complex containing the C10H7 group is associated with the charge transfer transitions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...